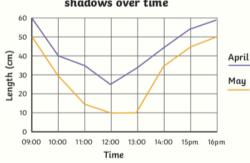
### Interpreting Data

Information can be show in tables, charts or graphs.

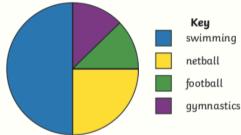

Interpreting data simply means understanding or working out what is being shown by a table, graph or chart and being able to answer questions about that information.

## Line Graph

Line graphs are used to show changes to a measurement over time.

Data shown in a line graph is continuous. Sets of points are joined together to make the line.

## A line graph to show the length of shadows over time




#### Pie Charts

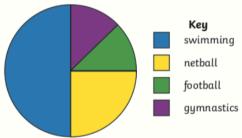
Pie charts represent discrete data.

segment represents a data category. The size of each segment matches its proportion of the total amount.

#### A pie chart to show children's favourite sports



24 children were asked in total.


Swimming =  $\frac{1}{2}$  so  $\frac{1}{2}$  of 24 = 12 children

Netball = 
$$\frac{1}{4}$$
 so  $\frac{1}{4}$  of 24 = 6 children

Football =  $\frac{1}{9}$  so  $\frac{1}{9}$  of 24 = 3 children

Gymnastics =  $\frac{1}{8}$  so  $\frac{1}{8}$  of 24 = 3 children

A circle is divided into segments, where each





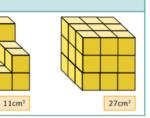
Swimming = 
$$\frac{1}{2}$$
 so  $\frac{1}{2}$  of 24 = 12 children

Netball = 
$$\frac{1}{4}$$
 so  $\frac{1}{4}$  of 24 = 6 childre

#### Perimeter, Area and Volume

Perimeter and Area

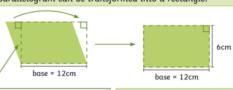
Shapes with the same area can have different perimeters.




#### Shapes with the same perimeter can have different areas.



#### **Volume - Counting Cubes**


= 1cm<sup>3</sup>

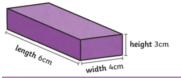


Knowledge Organiser

base x perpendicular height = area of a parallelogram

A parallelogram can be transformed into a rectangle.




12cm × 6cm = 72cm<sup>2</sup>

#### **Volume of Cuboids**

perpendicular height = 6cm

Area of a Parallelogram

length × width × height = volume of a cuboid



Multiply dimensions in any order:

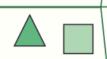
3cm × 6cm × 4cm

volume = 72cm3

Use the Common Denominator

Multiples of 5:

5, 10, 15


# Ratio and Fractions



For every 1 rugby ball, there are 2 footballs.

Ratio of rugby balls to footballs: 1:2

 $\frac{1}{3}$  of the balls are rugby balls.



For every 1 triangle, there are 3 squares.

Ratio of triangles to squares: 1:3

 $\frac{1}{4}$  of the shapes are triangles.

## **Dividing Fractions by Whole Numbers**

$$\frac{2}{5} \div 2 = \frac{1}{5}$$

Multiplication and division are the inverse of one another so:  $\div$  2 is the same as  $\times \frac{1}{3}$ 

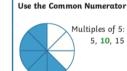
### **Multiplying Proper Fractions**

#### **Multiplying Fractions by Fractions**

$$\frac{1}{2} \times \frac{1}{3} = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

Multiplying Fractions by Whole Numbers



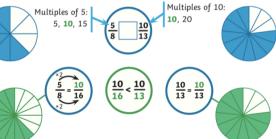

#### Simplify Fractions Compare and Order Fractions



Factors of 9: 1, 3, 9

Factors of 12: 1, 2, **3**, 4, 6, 12










Multiples of 3:

3, 6, 9, 12, 15

